若M为△ABC所在平面内一点,且满足(向量MB-向量MC)*(向量MB+向量MC)=0,向量MB+向量MC+2向量MA=0向量
则△ABC的形状为
答案是等腰三角形 请注意题目 第一个是0,第二个是0向量 求完整解析 谢谢
人气:309 ℃ 时间:2019-08-20 14:51:28
解答
由(MB-MC)(MB+MC)=0,
得 MB²-MC²=0,即|MB|²-|MC|²=0
|MB|=|MC|,
所以 M在边BC的垂直平分线上.
从而 向量MB+MC的以MB,MC的邻边的菱形的对角线,
即MB+MC在线段BC的垂直平分线上,
而 2MA=-(MB+MC),与MB+MC共线,
从而 A点在线段BC的垂直平分线上,所以 |AB|=|AC|
推荐
猜你喜欢
- liz现在梳短发,但以前她是长发 翻译为英文
- consider the curve given by y的平方 =2+xy
- Ending what What I cannot do?
- 现在刚升入高一,数学学的是有关集合方面的问题,比如交集,并集,函数定义域,值域什
- only on sundays does he gets up at 9:00有错吗?get 后面加s
- 汤姆索亚历险记中海盗生活谢了()三个小海盗在()岛的清晨生活写了他们()的心境
- 甲,乙两人同时从A,B两地同时出发相向而行,经过5个小时相遇,甲再4个小时到达b地则a要几小时到b地的答案
- 解释垂直平面镜成像3个