设F1,F2是椭圆x^/a^2+y^/b^2=1的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值
设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值
人气:295 ℃ 时间:2019-09-27 11:30:43
解答
因为PF1+PF2=2a,令PF1=X,则PF2=2a-X,PF1*PF2=X*(2a-X)=-(X-a)^2+a^2,其中:X≤a+c,显然当X=a时,PF1*PF2取得最大值=a^2,当X=a+c时,PF1*PF2取得最小值=a^2-c^2=b^2.
推荐
- P是椭圆x29+y24=1上的点,F1、F2 是两个焦点,则|PF1|•|PF2|的最大值与最小值之差是_.
- 设P是椭圆x24+y2=1上的一点,F1,F2是椭圆的两个焦点,则|PF1
- 设P为椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆的两个焦点,则|PF1
- 已知P是椭圆x^2/4+y^2/3=1上的点,F1,F2是两个焦点,求|PF1|*|PF2|的最大值和最小值
- F1.F2是椭圆x^/4+y^2=1的左右焦点.点P在椭圆上运动,求PF1*PF2的最大值和最小值
- 一项工程,如果由甲队独做,正好在规定时间内完成.如果乙队独做,要超出规定时间4天才能完成.如果先由甲
猜你喜欢