已知函数f(x)=a1x a2x^2 a3x^3 … anx^n,且对一切正整数n都有f(1)=n^2成立
1,求数列{an}的通项公式.2,求1/a1a2 1/a2a3 … 1/ana(n 1)
人气:363 ℃ 时间:2020-09-24 12:26:37
解答
1,设Sn=a1+a2+a3+…+an S1=a1=1^2=1
n>=2时,an=Sn-S(n-1)=n^2-(n-1)^2=2n-1 a1=1也符合此式.
所以通项公式为:an=2n-1(n=1,2,3,…)
2,1/(a1a2)+1/(a2a3)+…+1/[a(n-1)an]
=1/(1*3)+1/(3*5)+…+1/[(2n-3)(2n-1)]
=(1/2)[1-1/3+1/3-1/5+…+1/(2n-3)-1/(2n-1)]
=(1/2)[1-1/(2n-1)]
=(n-1)/(2n-1)
推荐
- 已知函数f(x)=m+a1x+a2x^2+a3x^3+a4x^4+.+anx^n+a(n+1)x^(n+1),n∈N*
- 已知函数f(x)=a0+a1x+a2x^2+a3x^3+anx^n的图像经过点(0,0)和(1,n^2)求通项
- 已知函数f(x)==a1x+a2x+…+anx,n∈N+,且f(1)=n^2,求数列{an}的通项公式
- 已知函数f(x)=a1x+a2x2+a3x3+…+anxn(n∈N*),且a1,a2,…,an构成一个数列,又f(1)=n2,则数列{an}的通项公式为_.
- 已知函数f (x)=a1x+a2x^2+a3x^3+……+anx^n(n属于n+)且f(1)=n^2+2n+3求数列a1,a2,a3,……,an的通项公式,
- 1.polite(反义词)2.swim(现在分词)
- 化简((cos20°/sin20°)cos10°)+根号3(sin10°tan70°)-2cos40°
- 英语翻译
猜你喜欢