> 数学 >
向量组 等价 线性代数
设 η∗ 是非齐次线性方程组 Ax = b 的一个解,ξ1,··· ,ξn−r 是对应的齐次线性方程组的一个基础 解系,证明:(1) η∗ ,ξ1,··· ,ξn−r 线性无关; (2) η∗,η∗ + ξ1,··· ,η∗ + ξn−r 线性无关.
证明:
(2) 易知向量组 η∗ ,ξ1,··· ,ξn−r 与向量组 η∗,η∗ + ξ1,··· ,η∗ + ξn−r 等价.又由本题 (1) 的结论,η∗ ,ξ1,··· ,ξn−r 线性无关,
——————————————————————
我就想知道答案里的“易知向量组 η∗ ,ξ1,··· ,ξn−r 与向量组 η∗,η∗ + ξ1,··· ,η∗ + ξn−r 等价.” 是怎么得到的?
已知,不用回答了,
人气:183 ℃ 时间:2020-02-02 23:05:58
解答
显然,η∗ ,ξ1,··· ,ξn−r 与向量组 η∗,η∗ + ξ1,··· ,η∗ + ξn−r能相互线性表示,所以相互等价一眼就可看出嘛
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版