函数f(x)=log1/2(x-x*2)的单调递增区间是?
人气:276 ℃ 时间:2019-10-11 05:05:59
解答
先看定义域
x-x^2>0
x(x-1)<0
0<x<1
要求f(x)=log1/2(x-x^2)的单调递增区间
即求x-x^2的减区间
x-x^2=-(x^2-x)=-(x-1/2)^2+1/4
所以增区间是(0,1/2) 减区间是(1/2,1)
所以f(x)=log1/2(x-x*2)的单调递增区间为(1/2,1)
推荐
猜你喜欢
- 数学{an}是等比数列,a1+a2+a3=28 ,a2+a3+a4=56
- 有没有描写猫外貌,动作与神态的作文?
- 硫化氢和氧气反应的化学式是不是有2个啊?哪2个?
- 若平行四边形的一边长为10,可作平行四边形的两条对角线的长度的是( )
- 运动员顽强拼搏的精神经常浮现在我的眼前.(修改病句)
- 高中数学 二项式定理 详细解释一下
- 一块边长为50厘米的正方形铝板,在四角剪掉边长1分米的正方形,作成无盖盒子,盒子的长,宽,高各是多少?
- 可爱的雪花阅读答案.你参考网上的可以,但是要给我理由