> 数学 >
已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(1/3)的x的取值范围是
人气:454 ℃ 时间:2019-10-18 13:46:40
解答
因为偶函数f(x)在区间[0,+∞)上单调递增
所以偶函数f(x)在区间(-∞,0)上单调递减
又因为f(2x-1)<f(1/3)
即f(-1/3)<f(2x-1)<f(1/3)
由图得即
-1/3<2x-1<1/3
解得:1/3<x<2/3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版