> 数学 >
当0<x<1时,求y=1/x+4/(1-x)的最小值
人气:133 ℃ 时间:2020-06-29 08:31:56
解答
0<x<1
设x=sinA^2,则1-x=cosA^2
y=1/x+4/(1-x)
=1/sinA^2+4/cosA^2
=1+ctgA^2+4+4tanA^2
=5+(ctgA^2+4tanA^2)>=5+2*√(ctgA^2*4tanA^2)=5+4=9
等号成立时ctgA^2=4tanA^2,=>tanA=1/2=>x=1/5
因此y的最小值是9
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版