已知函数f(x)=ax^4lnx+bx^4-c(x >0)在x=1处取得极值-3-c,其中a,b为常数
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间
人气:205 ℃ 时间:2019-08-21 14:07:43
解答
1,因为函数在x=1处取得极值-3-c,那么有f(1)=b-c=-3-c故得到b=-3.对函数求导,有f'(x)=(4alnx+a+4b)x^3,因为x=-1为函数的极值点,所以有f'(-1)=0于是有a+4b=0,于是有a=12.2,f(x)=(12lnx-3)x^4-c;f'(x)=48(lnx)x^3,因为...
推荐
- 已知函数f(x)=ax^4lnx+bx^4-c(x >0)在x=1处取得极值-3-c,其中a,b为常数
- 已知函数f(x)=ax^4lnx+bx^4-c在x=1处取得极值-3-c,其中a,b为常数.对任意x>0,不等式f(x)>=-2c^2恒成立.求
- 已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数. (1)试确定a,b的值; (2)讨论函数f(x)的单调区间; (3)若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取
- 已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数. (1)试确定a,b的值; (2)求函数f(x)的单调增区间; (3)若对任意x>0,不等式f(x)≥-(c-1)4+(c-1)2-c+9
- 已知函数f(x)=ax∧4inx+bx∧4-c(x>0)在x=1处取得极值-3-c,其中abc为常数
- 设y=(ax+b)/(cx+d),a.b.c.d都是有理数,x是无理数.求证:(1)当bc=ad时,y是有理数(2)当bc不等于ad时,
- 有关唐诗宋词元曲知识问答题
- 菜鸟用英文怎么说?
猜你喜欢