已知函数f(x)=-x3+3x2+9x+a.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
人气:267 ℃ 时间:2019-08-08 19:28:06
解答
(I)f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
推荐
- 已知函数f(x)=-x^3+3x^2+9x+a (1)求f(x)的
- 已知函数f(x)=-x^3+3x^2+9x+a,若f(x)在区间「-2,2」上的最大值为20,求它在该区间上的最小值.
- 已知函数f(x)=-x3+3x2+9x+a. (Ⅰ)求f(x)的单调递减区间; (Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
- 已知函数f (x)=-x^3+3x^2+9x+a 若f x 在区间[-2,2]上的最大值为20,求该区间上的最小值
- 已知函数f(x)=-x3+3x2+9x+a. (Ⅰ)求f(x)的单调递减区间; (Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
- 关于化学反应速率的计算
- 题目给出一副漫画,一个游客站在一头张着大嘴的石狮前,石狮的嘴巴里写着票价两个字,在石狮的下面有一块板(面积大约是石狮的5分之一)写着"某公园景点".题目要求根据漫画写一个成语或俗语,不得超过6个字,然后再说说其表达的意思.
- 6+66+666+6666+...+666666...666(2011个6),后五位数是多少?
猜你喜欢