已知x0是函数f(x)=2^x+1/1-x 的一个零点 若x1属于(1,x0) x2属于(x0,正无穷)
A f(x1)0 f(x2)>0
人气:363 ℃ 时间:2019-08-19 14:50:03
解答
这个函数在(1,正无穷)上是递增的,所以f(x1)f(x0)=0 选B
推荐
- 已知X0是函数f(x)=2^x+1/(1-x)的一个零点,若x1∈(1,X0),x2∈(X0,+∞),则
- 已知函数X0是函数f(x)=2*x+[1/(1-x)]的一个零点,若x1∈(1,x0),x2∈(x0,∞),则
- 已知x是函数f(x)=2x+1/1-x的一个零点,若x1属于(1,x0)x2属于(x0,正无穷)则f(x1).f(x2)分别是否大于0
- 已知x0是函数f(x)=1/(1-x)+Inx的一个零点,若x1∈(1,x0), x2∈(x0,+无穷),则
- 已知X0是函数f(x)=2^x+1/(1-x)的一个零点,若x1∈(1,X0),x2∈(X0,+∞),则 5 | 解决时间
- 设总体x服从参数为2的指数分布,x1,x2...xn为总体X的简单随机抽样,则当n→∞时,Yn=1/n∑Xi依概率收敛于?
- 我国的国旗上的五颗星代表了什么意思?
- 3又20分之1的小数是多少?
猜你喜欢