> 数学 >
如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.
人气:474 ℃ 时间:2019-08-17 18:27:04
解答
证明:延长CE、BA交于F点,如图,
∵BE⊥EC,
∴∠BEF=∠CEB=90°.
∵BD平分∠ABC,
∴∠1=∠2,
∴∠F=∠BCF,
∴BF=BC,
∵BE⊥CF,
∴CE=
1
2
CF,
∵△ABC中,AC=AB,∠A=90°,
∴∠CBA=45°,
∴∠F=(180-45)°÷2=67.5°,∠FBE=22.5°,
∴∠ADB=67.5°,
∵在△ADB和△AFC中,
∠F=∠ADB
∠BAC=∠FAC
AB=AC

∴△ADB≌△AFC(AAS),
∴BD=FC,
∴BD=2CE.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版