证明对任意正整数n,不等式ln(1/n + 1)>1/n^2 +1/n^3 注:^2是平方 ^3是三次方
主要是运算出结果 关键步骤请指出
是 1/n^2 -1/n^3 抱歉
人气:349 ℃ 时间:2019-08-18 12:52:04
解答
证明:构造函数f(x)=ln(x+1)-x^2+x^3,(x>0)而f'(x)=1/(x+1)-2x+3x^2=(3x^3+x^2-2x+1)/(x+1)=[3x^3+(x-1)^2]/(x+1)由于x>0,则f'(x)>0显然成立.于是f(x)在(0,+∝)上单调递增.于是f(x)>f(0)=0上式也即ln(x+1)>x^2-x^3而...
推荐
猜你喜欢
- There is [ ] 'm' in the word 'map' A.the B.a C.an D this 说清楚理由
- 太阳光线照到地球后到哪里去了,又反射回太空吗?
- Her aunt bought her a colorful scarf.
- 8,8,8,6加减成除,一个数字只能用一次,怎么等于24?
- AO⊥BC,垂足为点O,且∠COD-∠DOA=34°28′,则∠BOD=?
- 做房子的桁条的杉木长度需3.8米,直径需要达到14厘米以上.有一根杉木长8米,在距根部3.8米处量得周长45
- 若一个数的两个平方根分别为a—5和2a+1则这个数为多少?
- 牛奶如何保鲜,牛奶保鲜方法