1)
a1+a3=2*a2
所以 a1+a2+a3=3*a2=12
所以 a2=4
d = a2 - a1 = 2
所以 an=a1+(n-1)d=2n
2)
bn=2n*3^n (3^n 表示3的n次方)
Sn = 2*3 + 4*9 + …… + 2n*3^n 【1】
3Sn= ____2*9 + …… + 2(n-1)*3^n + 2n*3^(n+1)【2】
【1】式-【2】式,得
-2Sn
= 2(3+9+……+3^n)-2n*3^(n+1)
= 2*[3*(3^n-1)/2]-2n*3^(n+1) 【3】
【3】式除以-2,得
Sn = n*3^(n+1) - 3*(3^n-1)/2
于是已经得到,{bn}的前项的和Sn = n*3^(n+1) - 3*(3^n-1)/2