在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处(如图1),绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.
(1)探究:在图2中,线段AE与CF之间有怎样的大小关系?试证明你的结论;
(2)若将直角三角尺45°角的顶点放在斜边BC边的中点O处(如图3),绕O点顺时针方向旋转,其他条件不变.
①试写出y与x的函数解析式,以及x的取值范围;
②将三角尺绕O点旋转(如图4)的过程中,△OEF是否能成为等腰三角
形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.
(1)线段AE与CF之间有相等关系.证明:连接AO.如图2,∵AB=AC,点O为BC的中点,∠BAC=90°,∴∠AOC=90°,∠EAO=∠C=45°,AO=OC.∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°,∴∠EOA=∠FOC.∴△EOA≌...