设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)=-1/2.
人气:397 ℃ 时间:2019-09-29 04:48:32
解答
∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.
推荐
- 设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)等于多少
- F(x)等于xF(t)在[0,X ]上的定积分,求F(x)导数
- 函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,
- 设f(x)在[0,1]上可导且满足f(1)等于 xf(x)在[0,1]的定积分证明:必有一点t属于(0,1),使tf`(t)+f(t)=0
- 设f(x)={x^2(x属于[0,1]) 2-x(x属于[1,2]),则f(x)的0到2的定积分等于?
- 数列极限limn→+∞(nn2+12+nn2+22+…+nn2+n2)=( ) A.π2 B.π6 C.π3 D.π4
- 张明投了4次,3次投中.王方投了3次,2次投中.李宏投了6次,5次投中.他们一共投进135个球.王方投进了几
- shirley temple是什么意思
猜你喜欢