抛物线的焦点弦与抛物线交于AB两点,过此两点作抛物线切线,切线交于c点,如何证明C点在抛物线的准线上.
人气:409 ℃ 时间:2019-11-08 07:30:53
解答
证明:我们不防设抛物线的方程为x^2=2py,那么其准线方程为y=-p/2,焦点F(0,p/2),设A(x1,y1),B(x2,y2),过焦点可设AB(斜率存在)直线方程为y=kx+p/2,联立x^2=2py消去y整理得x^2-2kpx-p^2=0,可得x1x2=-p^2(定值)易知抛物线上任意一点的斜率(求导)为2py'=2x,得K=y'=x/p,易得分别过A,B的切线方程为y=(x1/p)(x-x1)+y1.(1),y=(x2/p)(x-x2)+y2.(2),其中y1=(x1^2)/(2p).(3),y2=(x2^2)/(2p).(4).将(3)、(4)代入(1)、(2).两式相减消去y得两切线交点横坐标xc=(x1+x2)/2.再用(1)*x2-(2)*x1,消去x解得两切线交点纵坐标yc=x1x2/(2p)=-p^2/(2p)=-p/2(定值)即c点在准线y=-p/2,从而命题得证.
推荐
- 抛物线焦点弦性质及证明
- 已知抛物线C:x^2=2y的焦点为F,过F做直线AB交C与A,B两点,过A,B分别作C的切线L1,L2
- 已知AB为抛物线x^2=2py(p>0)的动弦(1)若AB过焦点(0,p/2),在AB两点处的切线交与一点,证明:
- 已知抛物线y^2=2px(p>0),过焦点F的动直线L交抛物线于A、B两点,抛物线在A、B两点处的切线相交于点Q,
- 设抛物线C:y=x^2的焦点为F,动点P在直线L:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线分别相切于A、B两点.
- 2a²-a-6,3x+3x-6,3m²-7m-6,6x²-x-15
- 描写花草姿势的四字词语
- 1.解方程(2x-3)^2+1=(3x-1)^2-5(x+3)(x-3) 2.解不等式(3x+2)(2-3x)<5x-9(x-6)(x+1)
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.