an是等差数列bn是等比数列a1=b1=1,a2b2=2,a3b3=1.75,求an,bn通项公式
人气:205 ℃ 时间:2019-10-02 21:17:34
解答
设公差为 d ,公比为 q ,
则 (1+d)q=2 ,(1)
(1+2d)*q^2=1.75 ,(2)
(1)的平方除以(2)得 (1+2d+d^2)/(1+2d)=4/1.75 ,
解得 d=3 ,q=1/2 或 d=-3/7 ,q=7/2 ,
所以 an=3n-2 ,bn=(1/2)^(n-1) ,
或 an=(10-3n)/7 ,bn=(7/2)^(n-1) .
推荐
- 已知数列{an}是等差数列,数列{bn}是等比数列,又a1=b1=1,a2b2=2,a3b3=7/4
- 已知等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}是等比数列,公比q=2,且a2b2=20,a3b3=56(1)求an与bn (2)求数列{anbn}的前n项和Tn
- {an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
- 已知{an}为等比数列,a1=1,a5=256,S n为等差数列{bn}的前n项和,b1=2,5S5=2S8 设Tn=a1b1+a2b2+...+anbn,求Tn
- 等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2S2=64,{ban}是公比为64的等比数列.(1)求{an}与{bn};(2)证明:1/S1+1/S2+…+1/Sn<3/4.
- 一篇400字美文+赏析
- 写一段表示老师高兴的句子
- mr green said he ( )in the school for about twenty years
猜你喜欢