已知动圆M恒过定点b(-2,0),且和定圆C(x-2)^2+y^2=4相切,求动点轨迹方程
人气:111 ℃ 时间:2020-06-28 16:57:48
解答
M(m,n)
过n
所以r=√[(m+2)²+n²]
圆心距d=√[(m-2)²+n²]
若外切
则d=r1+r2
√[(m-2)²+n²]=2+√[(m+2)²+n²]
√[(m-2)²+n²]-√[(m+2)²+n²]=2
到(2,0)距离减去到(-2,0)距离是2
所以是双曲线
c=2,2a=2
a=1
b²=3
所以x²-y²/3=1
到(2,0)远,是左支
若内切
则d=r1-r2
√[(m-2)²+n²]=√[(m+2)²+n²]-2
√[(m+2)²+n²]-√[(m-2)²+n²]=2
和上面一样
但到(-2,0)远,是右支
所以是x²-y²/3=1
推荐
- 一动圆过定点M(-4,0),且与已知圆(x-4)^2+y^2=9相切,求动圆圆心的轨迹方程
- 已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是_.
- 若圆M与定圆C:x²+y²+4x=0相切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为
- 已知定圆x^2+y^2-6x-55=0,动圆M和已知圆内切且过点P(-3,0),求圆心M的轨迹方程
- 已知半径为1的动圆M与圆N:(x-5)^2+(y-7)^2=16相切,求动圆圆心M的轨迹方程.
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢