设F
1,F
2是双曲线
−=1的两个焦点,点P在双曲线上,且∠F
1PF
2=60°,△F
1PF
2的面积______.
人气:457 ℃ 时间:2019-08-20 10:32:07
解答
由题意x29−y216=1,可得 F2(5,0),F1 (-5,0),由余弦定理可得 100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1•PF2,∴PF1•PF2=64.S△F1PF2=12PF1•PF2sin60°=12×64×32=163.故答...
推荐
- 设F1F2是双曲线x2/9-y2/16=1的两个焦点,点P在双曲线上且 角F1PF2=60度,求三角形F1PF2的面积?
- P在e=5/4的双曲线X^2/a^2-Y^2/b^2=1上,F1F2是其焦点,且向量PF1*PF2=0若三角形F1PF2的面积为9求A+B 过程
- 若椭圆x^2/m+y^2=1(m>0)与双曲线x^2/n-y^2=1(n>0)有相同的焦点F1F2,P是两曲线的一个交点;三角形F1PF2面积
- 设F1F2为双曲线x^2/4-y^2/4=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求三角形F1PF2的周长和面积
- 设F1f2为双曲线X平方/2-4平方/y=1.的两个焦点,点P在双曲线上且满足角F1pf2=90度,则三角形F1pf2的面积是
- membership-driven是什么意思
- 当 limx→1负时 ln(1-x)/(tanπx/2)=?
- 填上合适的词语:( )般的绿色,( )般的落叶,( )般的脸蛋,( )般的草皮
猜你喜欢