> 数学 >
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为
这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是 三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由
人气:322 ℃ 时间:2019-08-22 15:35:00
解答
虽然没有图,这里随便说说吧
(1)“抛物线三角形”一定是等腰三角形,因为抛物线是轴对称图形,抛物线与X轴的两个交点关于抛物线对称轴对称,定点到两交点的距离相等,所以是等腰三角形.
(2)因为抛物线y=-x2+bx(b>0)过原点,设抛物线顶点为B点,抛物线与X轴的另一交点为A点,若“抛物线三角形”是等腰直角三角形,△OAB中,∠OBA=90°,
抛物线的对称轴是x=b/2,B点坐标为(b/2,b/2)代入函数表达式,b/2=-(b/2)的平方+b*b/2,算出b=2
(3)存在,若要O点成为矩形ABCD的对称中心,则有OA=OB,那么△ABO就是等边三角形了,抛物线对称轴为 x=b'/2,则抛物线顶点坐标为(b'/2,b'/2 * tg60°).
代入函数表达式算出b'=2√3/(2√3 - 1)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版