二重积分问题 (1)计算∫∫根号下(y^2-xy) dxdy,区域D={y=x,x=0,y=1} (2)区域D={(X,Y)| X^2+Y^2
人气:195 ℃ 时间:2019-08-21 20:47:10
解答
∫∫根号下(y^2-xy) dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy) dx]dy
=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y) d(1-x/y]dy
=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y) d(1-x/y]dy
=∫(0,1)[(-y^2*2(1-x/y)^1.5/3|(0,y)dy
==∫(0,1)[-2y^2/3]dy=-2y^3/9|(0,1)=2/9
推荐
猜你喜欢
- We walk( )the bridge and get to school every day
- I look good in red,so I _____ red.A.prefer B.would rather
- 原核细胞(无线粒体)中ATP只能依靠无氧呼吸产生——这句话为什么是错误的?
- 万户那种勇于实践的探索精神,人们的内心深处受到了极大的震撼和鼓舞(改病句)
- 设事件A,B 独立且互不相容,则min{P(A),P(B)}=()?写出解题步骤啊?知道答案但不知道为什么,答案是0
- 城镇污水处理厂进水标准
- 若实数ρ,θ满足3ρcos∧2 (θ)+2ρsin∧2 (θ)=6cosθ,则ρ的平方的最大值为?
- 筑路大军同心协力,克服重重困难,终于胜利贯通了(修改病句)