(1)由已知条件,a,a+4,a+6为等比数列,所以a(a+6)=(a+4)^2 a=-8
an=2n-10
(2)c(n+1)-cn = (1/2)^n
所以c(n+1)=cn+(1/2)^n
=c(n-1)+(1/2)^(n-1)+(1/2)^n
..
=c1+(1/2)^1+(1/2)^2+...+(1/2)^(n-1)+(1/2)^n
=2-(1/2)^n
即c(n+1)=2-(1/2)^n cn=2-(1/2)^(n-1)
所以f(n)=n^2-4n+5+2-(1/2)^(n-1)
bn在n=2处取最小值,先减小,后增大;
而cn一直增大
故f(n)的最小值只能在前两项中产生,f(1)=-8+1=-7f(2)=-9+2-0.5=-7.5
所以最小值为-7.5