已知函数f(x)=lnx-bx^2+ax(a,b属于实数)
1,若y=f(x)图象上的点(1,2)处的切线斜率为0,求y=f(x)的极限;
2,当b=a^2 时,函数f(x)在区间x>1上是减函数,求实数a的取值范围
人气:294 ℃ 时间:2020-04-25 13:35:04
解答
问题1:由于y=f(x)图象上的点(1,2)处的切线斜率为0;所以(2,1)在该函数上,可得:
ln(1)-b*(1)^2+a(1) = 2 => 0-b+a=2;
该函数斜率为 对函数求导:1/x-2bx+a ;当x=1时,1/x-2bx+a=0; => 1-2b+a=0;
有上述两个等式可得:a=5; b=3; 然后将a,b的值,带入上述函数中,即可求得极限.我不知道你所求的函数极限,x是趋向于多少的,无穷大、0、某个数值?自己带进去求一下就出来了.
问题2:将b=a^2带入函数,化简可得:f(x)=lnx-(a^2)x^2+ax.对该函数求导可得:1/x-2(a^2)x+a.
由于函数f(x)在区间x>1上是减函数,所以当x>1时,1/x-2(a^2)x+a-1/(2a),则若1/a>1,满足条件,得:a
推荐
- 已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x),x>0或-f(x),x0,且f(x)为偶函数,判断F(m)+F(n)能否大于零
- 设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数. (1)若f(x)在(2,+∞)上是单调减函数,且g(x)在(2,+∞)上有最小值,求a的取值范围; (2)若g(x)在(0,+∞)上是单调增函数
- 已知函数f(x)=(1-x)/ax+lnx,且a为正实数,当a=1时,求f(x)在[1/2,2]上的最大值和最小值
- 已知函数f(x)=1-x/ax+lnx.(1)若函数f(x)在〔1,+§)上为增函数,求正实数a的取值范围.
- 已知函数f(x)=1-x\ax+lnx,若函数f(x)在【1,正无穷)上是增函数,求正实数a的取值范围
- 做一个长方体形状的鱼缸,长8分米,宽3分米,需要玻璃多少平方分米?
- Every boring hour in life is unique
- 英语翻译
猜你喜欢