证明在任意给出的n+2个正整数中必有两个数,它们的差或它们的和能被2n整除
用鸽笼原理证明
人气:236 ℃ 时间:2020-04-30 11:04:09
解答
所有正整数可以分为2n类
被2n除余0(整除)的为第1类
被2n除余1的为第2类
被2n除余2的为第3类
被2n除余3的为第4类
.
被2n除余2n-1的为第2n-1类
任意一类中的两个数之差可以被2n整除
而分别来自第k类和第n-k类(称为互补类)中的两个数之和可以被2n整除
如果n+2个正整数没有两个来自于同一类必然有两个数来自于互补类
得证
推荐
猜你喜欢
- he____there two or three times.A.has only been B.has only gone
- A:Hello How are you B;I am { ],what is { } with you?A:I have got{ }cold.B:I am{ } to {
- 回答一些简单的英语问题
- You always tell me don't cry 翻译中文?
- 现有五种元素及其化合价依次为H,S,O,K,Na,利用这些元素及其指定化合价式,
- 已知分式(2x^2-3x+7)/(2x-1)及x的值都是整数,求x的所有可能的值
- 13分之2的分子加上4,要使分数的大小不变,分母应( )
- 30,153,473元 标准读法怎么读?