正方形ABCD的边长为a.将足够大的正方形OMNP的一顶点放在正方形ABCD的对称中心O点
正方形ABCD的边长为a.
操作与计算:将足够大的正方形OMNP的一顶点放在正方形ABCD的对称中心O点,且OM⊥BC,OP⊥DC.试求两个正方形重叠部分四边形OECF的面积.
思考与探究:若将正方形OMNP绕点O旋转任意一个角度,此时BE与CF相等吗?为什么?能求四边形OECF的面积吗?你有什么发现?
人气:160 ℃ 时间:2019-09-03 06:07:21
解答
(1)重叠部分的面积为1/4a²
(2)探究若将正方形OMNP绕点O旋转任意一个角度,此时BE与CF相等,四边形OECF的面积为1/4a²
证明:
∵四边形ABCD是正方形
∴OB⊥OC,OB=OC,∠OBE=∠OCF=45°
∵∠EOF=90°
∴∠APE=∠CPF
∴△BOE≌△COF
∴BE=CF
∵△BOE≌△COF
∴S△BOE=S△COF
∴S四边形OECF=S△OBC=1/4a²
发现:无论旋转多少度,四边形OECF的面积不变,BE=CF
推荐
- 如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方
- 正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明) (2)当正方形ABCD绕
- 如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方
- 如图,边长为2的正方形ABCD中,顶点A的坐标是(0,2),一次函数y=x+t的图象l随t的不同取值变化时,位于l的右下方由l和正方形的边围成的图形面积为S(阴影部分). (1)当t何值时,S=3;
- 如图,正方形ABCD的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD的顶点上,且它们的各边与正方形ABCD各边平行或垂直.若小正方形的边长为X,且0
- 英语翻译
- 在三角形ABC中,角A,B,C所对的边分别为a,b,c,tanA等于四分之一,tanB等于五分之三.求角C的大小.若c等于耕号十七,求a边长.
- 世界上有食人鱼吗?
猜你喜欢