>
数学
>
已知命题p:“∀x∈[1,2],
1
2
x
2
-ln x-a≥0”与命题q:“∃x∈R,x
2
+2ax-8-6a=0”都是真命题,求实数a的取值范围.
人气:124 ℃ 时间:2019-10-17 02:31:52
解答
∵∀x∈[1,2],
1
2
x
2
-lnx-a≥0,
∴a≤
1
2
x
2
-lnx,x∈[1,2],
令f(x)=
1
2
x
2
-lnx,x∈[1,2],
则f′(x)=x-
1
x
,
∵f′(x)=x-
1
2
>0(x∈[1,2]),
∴函数f(x)在[1,2]上是增函数、
∴f(x)
min
=
1
2
,∴a≤
1
2
.
又由命题q是真命题得△=4a
2
+32+24a≥0,
解得a≥-2或a≤-4.
因为命题p与q均为真命题,
所以a的取值范围为(-∞,-4]∪[-2,
1
2
]
推荐
已知函数f(x)=lnx+2x,g(x)=a(x2+x),若f(x)≤g(x)恒成立,则实数a的取值范围是_.
已知命题p:"任意x属于[1,2],1/2^2-lnx-a≥0,与命题q:"存在x属于R,x^2=2ax-8-6a=0都是真命题,求a的范围,答案是[-无穷,-4]并[-2,1/2]求过程,尤其是命题p的解
已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x)+(2a+1)在区间(1/e,e)内只有两个不相等的实数根?若存在,求a的取值范围;若不存在,请说明理由.
函数f(x)=lnx-1/2ax²-2x存在单调递减区间,则实数a的取值范围?
已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是?我的想法是先求导得到lnx-2ax+1=0,
已知集合M={X|5
乙醇的沸点?
范进中举了,家庭地位社会地位发生显著变化,为什么说在他身还体现封建可掬的罪恶
猜你喜欢
盒子里有红球和白球119个,将红球增加到八分之三,白球减少五分之二后,红白球现在共121个原来各多少?怎样算
某校生物课外小组在校园内植树,他们将一小树幼苗栽下去,每天给小树浇水\施肥,两年后,小树长成了大树.小树长成大树所增加的物质主要来源于( )
望梅止渴文言文的意思
一元二次不等式习题
描写理想的古诗词
用Be动词填空:____ Daming from America?No,he ______.
六年级共有94名同学,派出男同学的1/5和4名女同学后,剩下的男和女正好相等,六年级有男、女同学各多少人?
After ten years of married,the couple were divorced 为什么用married把这部分的语法说一下!
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版