>
数学
>
已知命题p:“∀x∈[1,2],
1
2
x
2
-ln x-a≥0”与命题q:“∃x∈R,x
2
+2ax-8-6a=0”都是真命题,求实数a的取值范围.
人气:415 ℃ 时间:2019-10-17 02:31:52
解答
∵∀x∈[1,2],
1
2
x
2
-lnx-a≥0,
∴a≤
1
2
x
2
-lnx,x∈[1,2],
令f(x)=
1
2
x
2
-lnx,x∈[1,2],
则f′(x)=x-
1
x
,
∵f′(x)=x-
1
2
>0(x∈[1,2]),
∴函数f(x)在[1,2]上是增函数、
∴f(x)
min
=
1
2
,∴a≤
1
2
.
又由命题q是真命题得△=4a
2
+32+24a≥0,
解得a≥-2或a≤-4.
因为命题p与q均为真命题,
所以a的取值范围为(-∞,-4]∪[-2,
1
2
]
推荐
已知函数f(x)=lnx+2x,g(x)=a(x2+x),若f(x)≤g(x)恒成立,则实数a的取值范围是_.
已知命题p:"任意x属于[1,2],1/2^2-lnx-a≥0,与命题q:"存在x属于R,x^2=2ax-8-6a=0都是真命题,求a的范围,答案是[-无穷,-4]并[-2,1/2]求过程,尤其是命题p的解
已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x)+(2a+1)在区间(1/e,e)内只有两个不相等的实数根?若存在,求a的取值范围;若不存在,请说明理由.
函数f(x)=lnx-1/2ax²-2x存在单调递减区间,则实数a的取值范围?
已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是?我的想法是先求导得到lnx-2ax+1=0,
苯乙炔是苯的同系物吗?
用成语来概括意思
一些关于高二电磁波的问题
猜你喜欢
少年闰土中表达了什么情感?
.要制作100套钢筋架子,每套有长2.9米、2.1米和1.5米的钢筋各一根.已知原材料长7.4米,如何切最省
用录音机录下自己的声音,重放时听到的声音与自己说话时自我感觉到的声音不一样,你能说出其中的道理吗?
北岛诗《回答中“卑鄙是卑鄙者的通行证,高尚是高尚者的墓志铭,”有什么含义
小刚有2分和5分硬币共36枚
青春是一朵娇艳的花,在春天的花园里尽情的绽放着;青春是——————————;青春是————————
一直角三角形的俩边长度分别为方程X平方减7X加12等于0,求直角三角形的面积
什么是直接设未知数列方程
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版