(2x+1)(ax−1) |
x |
当a≤0时,F′(x)≥0,F(x)单调递增,F(x)≤0不可能恒成立;
当a>0时,令F′(x)=0,得x=
1 |
a |
1 |
2 |
当0<x<
1 |
a |
1 |
a |
故F(x)在(0,+∞)上的最大值是F(
1 |
a |
1 |
a |
即ln
1 |
a |
1 |
a |
∵gg(a)=ln
1 |
a |
1 |
a |
∴ln
1 |
a |
1 |
a |
∴a的取值范围是[1,+∞).
故答案为:[1,+∞).
(2x+1)(ax−1) |
x |
1 |
a |
1 |
2 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |