| (2x+1)(ax−1) |
| x |
当a≤0时,F′(x)≥0,F(x)单调递增,F(x)≤0不可能恒成立;
当a>0时,令F′(x)=0,得x=
| 1 |
| a |
| 1 |
| 2 |
当0<x<
| 1 |
| a |
| 1 |
| a |
故F(x)在(0,+∞)上的最大值是F(
| 1 |
| a |
| 1 |
| a |
即ln
| 1 |
| a |
| 1 |
| a |
∵gg(a)=ln
| 1 |
| a |
| 1 |
| a |
∴ln
| 1 |
| a |
| 1 |
| a |
∴a的取值范围是[1,+∞).
故答案为:[1,+∞).
| (2x+1)(ax−1) |
| x |
| 1 |
| a |
| 1 |
| 2 |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |
| 1 |
| a |