设三阶对称矩阵A的特征值为1,-1,0而λ1和λ2的特征向量分别为(a,2a-1,1)^T,(a,1,1-3a)^T,求A
根据两特征向量正交求得a=0 or 1 怎么求对应于0的特征向量?
人气:140 ℃ 时间:2020-06-06 11:10:44
解答
方法一样,设为 (x1,x2,x3)^T,与已知的两个特征向量都正交即得
推荐
- 设三阶对称矩阵A的特征值为1,-1,0而λ1和λ2的特征向量分别为(a,2a-1,1)^T,(a,1,1-3a)^T,求
- 设三阶实对称矩阵A的特征值为1,-1,0而λ1=1和λ2=-1的特征向量分别为(a,2a-1,1)^T,(a,1,1-3a)^T,求矩阵A.
- 设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(-1,1,1),求A
- 3阶实对称矩阵A的三个特征值为2,5,5,A的属于特征值2的特征向量是(1,1,1)
- 已知三阶实对称矩阵A的特征值为0.1.1,0对应的特征向量为(0,1,1)T,求特征值1对应的特征向量和矩阵A
- 解方程:(x²-x)-4(x²-x)-12=0
- 什么叫卤族元素?
- 带“像”的就是比喻句吗?
猜你喜欢