把积分∫∫∫f(x,y,z)dxdydz化为三次积分,其中积分区域是由曲面z=x^2+y^2,y=x^2及平面y=1,z=0围成的闭区域
人气:212 ℃ 时间:2020-02-06 01:05:16
解答
原式=∫dx∫dy∫f(x,y,z)dz.
推荐
- 计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.
- ∫∫∫(5xy^2)dxdydz,其中是由曲面z=h/R(x^2+y^2)^1/2与平面z=h(R>0,h>0)所围成的闭区域
- 化三重积分i=∫∫∫f(x,y,z)dxdydz为三次积分,其曲面由z=x^2+2y^2及z=2-x^2所围成
- 计算∫∫∫(x^2+y^2)dxdydz, 积分区域由曲面z=2-x^2 和z=x^2+2y^2所围成的闭区域,在线等
- 设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdydz.
- 游览了长城,受到了教育.修改病句
- 保护森林能得到什么好处
- 门庭若市的反义词
猜你喜欢