设A(x1,y1)为椭圆x^2+2y^2=2上一点,F1,F2为此椭圆的两个焦点
过点A作斜率为-x1/2y1的直线l,d为原点到直线l的距离.
求证:√(┃AF1┃*┃AF2┃)*d为定值
人气:399 ℃ 时间:2020-04-13 12:56:45
解答
答:
椭圆过A点的切线方程为
x*x1+2y*y1=2,比较斜率知直线l就是切线.
由点到直线的距离公式知
d=│0*x1+0*2y1-2│/√[(x1)^2+4(y1)^2]
x1^2+2(y1)^2=2带入化简,得
d^2=2/[4-(x1)^2]
│AF1│=a+ex1,│AF2│=a-ex1,
故│AF1│*│AF2│*d^2=[a^2-e^2*(x1)^2]*2/[4-(x1)^2]
=[2-1/2(x1)^2]*2/[4-(x1)^2]
=1
(√│AF1│*│AF2│)*d=1
推荐
- 椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1,F2点,A(4,m)在椭圆E上,且向量AF2*向量F1F2=0,点D(2,0)到直线F1A的距离DH=18/5
- 椭圆b^2x^2+a^2y^2=a^2b^2(a>b>0)的两个焦点为F1,F2.
- 过椭圆4x2+2y2=1的一个焦点F1的直线与椭圆交于A、B两点,则A、B与椭圆的另一焦点F2构成△ABF2,那么△ABF2的周长是( ) A.2 B.22 C.2 D.1
- 已知点F1 F2 是椭圆x^2+2y^2=2 的两个焦点,点P是该椭圆上的一个动点 那么
- 设F1,F2是离心率为e的椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的左右焦点,P(x1,y1)是椭圆上的一点,则PF1的长度,和PF2的长度,
- V.Complete the dialogue.补全对话.(10分)答案写在后面横线上.
- 一个没有盖的圆柱形铁皮水桶,高是12米,底面直径是高的四分之三.做这个水桶大约用铁皮多少平方分米?(用进一法取近似数值,得数保留整十数平方分米.)
- 1.已知三角形ABC中,AB,BC,CA,边上的中点分别为F(3,-2),D(5,4),E(-1,-8),求BC边上中线AD的长.
猜你喜欢
- 某人站在高楼的平台边缘,
- 7.已知整型变量a=3,b=4,c=5,写出逻辑表达式a
- 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有( ) A.7个 B.8个 C.9个 D.10个
- 把一根长1米的长方体材料平均截成4段后,表面积增加了36平方厘米,原来这根木料的体积是多少?
- 虎,牛,完,元.多一笔或少一笔是什么字?
- 为什么摇晃瓶子后,里面的液体会产生气泡?
- 天上的街市属于联想的句子有?