> 数学 >
已知,如图所示,∠ABD和∠BDC的平分线相交于点E,BE的延长线交CD于点F,∠1+∠2=90°.
求证:AB∥CD 试探究∠2与∠3的数量关系
人气:153 ℃ 时间:2020-04-12 19:35:01
解答
分析:(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.
(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.
证明:(1)∵BE、DE平分∠ABD、∠BDC,
∴∠1=12∠ABD,∠2=12∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁内角互补,两直线平行)
(2)∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版