【三角函数恒等变换】在△ABC中,已知tan[(A+B)/2]=sinC,给出以下四个论断,其中正确的是?
【论断】:①tanA·cotB=1 ②0<sinA+sinB≤sqrt2 ③sin^2 A+cos^2 B=1 ④cos^2 A+cos^2 B=sin^2 C
【选项】:A.①③ B.②④ C.①④ D.②③
人气:254 ℃ 时间:2020-06-27 19:47:29
解答
(A+B)/2+ C/2=90°,Sin(A+B)/2=cos C/2,cos(A+B)/2= Sin C/2,tan[(A+B)/2]= Sin(A+B)/2 /cos(A+B)/2= cos C/2 /Sin C/2,tan[(A+B)/2]=sinC可化为:cos C/2 /Sin C/2=2 Sin C/2 cos C/2cos C/2=2 Sin ²C/2 cos C...
推荐
猜你喜欢
- 翻译成英语.”沿着道路”.”另外两个小时”
- 用严组词.1()凶犯 2()烟火 3()秘密 4()批评 5()声明 6 形势() 7结构()
- 在平行四边形ABCD中,∠D=120°,∠CAD=32°.则∠ABC=(),∠CAB=().
- 求连云港花果山的英语简介(包括景点介绍)
- 5,9,11,13,加减乘除等于24
- 为什么不早点起床呢?英汉互译 英语
- 利用节点KCL方程求解某一支路电流时,若改变接在同一节点所有其他已知支路电流的参考方向,将使求得的结果有符号的差别.错.电路分析基础,大一,
- 为什么七喜饮料的英文是“7up"?