> 数学 >
如图,二次函数y=ax²+bx+c的图像经过点A(3,0),B(-1,0),C(0,3).
①求此函数的解析式
②在线段AC上是否存在点P(不含A,C两点),使△ABP与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由
人气:399 ℃ 时间:2019-08-18 08:26:52
解答
①将A、B、C三点坐标代入函数解析式,得到关于a、b、c的三元一次方程组
9a+3b+c=0;a-b+c=0;c=3,解得a=-1,b=2,c=3,因此函数解析式为y=-x²+2x+3
②假设存在满足条件的点P,使得△ABP与△ABC相似,则由于∠BAP=∠BAC,∠PBA<∠ABC
因此∠PBA=∠ACB,直线BP的斜率k=tan∠PBA=tan∠ACB=tan(∠ACO+∠OCB)
=(tan∠ACO+tan∠OCB)/(1-tan∠ACOtan∠OCB)=(1+1/3)/(1-1/3)=2
因此直线BP为y=2x+2,而直线AC为y=-x+3
联立解得交点P坐标(1/3,8/3),因为0<1/3<3,所以P在线段AC上
故点P(1/3,8/3)即为符合条件的点使△ABP与△ABC相似.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版