x^2=4y,直线l过焦点与抛物线交于A,B两点,过A,B的切线为l1,l2
(1)求证L1垂直L2
(2)证明:L1与L2的焦点在准线上
人气:449 ℃ 时间:2020-03-29 21:21:19
解答
(1)∵直线l与抛物线x^2=4y相交于两点,∴直线l存在斜率,令其斜率为k.由抛物线方程x^2=4y,得其焦点F的坐标为(1,0),∴直线l的方程是y=kx+1.∵A、B都在直线y=kx+1上,∴可设A、B的坐标分别为(m,km+1)、(n,k...
推荐
- 抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以AF、BF为邻边作平行四边形FARB,试求动点R的轨迹方程,并说明曲线的类型.
- 抛物线x^2=4y,焦点F,A,B为过F与抛物线的交点,过A,B作抛物线切线交点为M,证向量FM×AB为定值
- 已知抛物线C:x^2=2y的焦点为F,过F做直线AB交C与A,B两点,过A,B分别作C的切线L1,L2
- 设F是抛物线G:x方=4y的焦点,过点P(0,4)作抛物线G的切点,求切线方程
- A,B是过抛物线x2=4y的焦点的动弦,直线l1,l2是抛物线两条分别切于A,B的切线,则l1,l2的交点的纵坐标为( ) A.-1 B.-4 C.−14 D.−116
- 2√2是无理数吗?
- 请问下米与公斤怎么换算
- 甲乙丙三人乘火车,每人行李都超过了免费的重量,需另加行李费,甲支付了3元,已支付了5元,并支付了7元.三人行李共重90千克,如这些行李一人携带,需支付35永远,丙带的行李重多少千克
猜你喜欢