![](http://hiphotos.baidu.com/zhidao/pic/item/0bd162d9f2d3572cb852d25e8913632763d0c384.jpg)
连结OA、OD.
∵四边形ABCD是正方形
∴OA=OD,∠AOD=90°,∠MAO=∠NDO=45°,
又∵∠MON=90°,
∴∠AOM=∠DON,
在△AMO与△DNO中,
|
∴△AMO≌△DNO(ASA),
∴AM=DN,
∴AM+AN=DN+AN=AD=a.
特别地,当点M与点A(点B)重合时,点N必与点D(点A)重合,
此时AM+AN仍为定值a.
故总有正方形的边被纸板覆盖部分的总长度为定值a.
(2)在等边△ABC中,连接OB,OC,当△OCE≌△OBD时,有OD+OE+CD+CE+OB+OC+BC为定值.此时∠DOE=∠BOC=360°÷3=120°.
同理在正五边形中,∠FOG=∠DOE=360°÷5=72°.
(3)由(1)、(2)可知,圆心角为
360° |
n |
故答案为:120°;72°;
360° |
n |