> 数学 >
求非齐次方程的特解:y"-4y=e^2x,y(0)=1,y'(0)=2
人气:471 ℃ 时间:2020-06-11 14:40:25
解答
特征方程
r^2-4=0
r=±2,因此等号右边包含在通解中
设特解是axe^(2x)
y'=2axe^(2x)+ae^(2x)
y''=4axe^(2x)+4ae^(2x)
代入原方程得
4axe^(2x)+4ae^(2x)-4axe^(2x)=e^(2x)
a=1/4
所以特解是y=1/4xe^(2x)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版