椭圆X^2/25+Y^2/9=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4.0)的距离成等差数列,求证ac的垂直平分线过定点
人气:294 ℃ 时间:2020-03-28 16:40:34
解答
由已知三距离成等差数列 |AF|-|BF|=|BF|-|CF| ,得:
2*|BF|=|AF|+|CF| → 2*9/5=[ (x1-4)^2 + y1^2 ]^(1/2) + [ (x2-4)^2 + y2^2 ]^(1/2)
因为(x1,y1),(x2,y2)在圆上,x1^2/25+y1^2/9=1,x2^2/25+y2^2/9=1,带入上面方程得:
2*9/5 = [ (25-4*x1)^2/25 ]^(1/2) + [ (25-4*x2)^2/25 ]^(1/2)
2*9/5 = [ 50 - 4(x1+x2) ]/5
∴ x1+x2=8 ;①
又∵ y1^2-y2^2=(-9/25)*(x1^2-x2^2)=(-72/25)*(x1-x2)
∴ -(x1-x2) / (y1-y2) = (25/72)*(y1+y2) ②
AC的垂直平分线过AC中点[ (x1+x2)/2,(y1+y2)/2 ],且与AC垂直,其方程可表示为:
y = [-(x1-x2) / (y1-y2) ] * [ x-(x1+x2)/2 ] + (y1+y2)/2 根据①、②式可得:
y = (25/72)*(y1+y2) * [ x-64/25 ]
所以,AC垂直平分线必过 ( 64/25,0 ) 点.
推荐
- 椭圆X225+Y29=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列.(1)求证x1+x2=8;(2)若线段AC的垂直平分线与x轴的交点为T,求直线的斜率.
- 椭圆X225+Y29=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列.(1)求证x1+x2=8;(2)若线段AC的垂直平分线与x轴的交点为T,求直线的斜率.
- 椭圆x^2/25+y^2/9=1上不同三点A(x1,y1)B(4,y)C(x2,y2)与右焦点F的距离成等差数列求x1+x2
- 椭圆x^2/25+y^2/9=1上不同三点A(x1,y1),B(4,9/4),C(x2,y2)到焦点F(4,0)的距离成等差数列,求x1+x2.
- 椭圆x²/25+y²/9=1上不同三点A(x1,x1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列,求证
- 函数y=tan(2x+π/3)+arctanx定义域 速求速求!
- 12克的镁和12克氧气反应最多可得到多少氧化镁?怎么个氧过量?百度上其他答案我看不太懂...
- 如图,在Rt△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q,分别从B,C两点同时出发,其中点P沿BC向中点C运动,
猜你喜欢
- 当x=3+1时,x2-2x-3的值是_.
- 在三角形ABC中,已知角B等于60°,b=4,三角形的面积=根号3,求三角形的周长
- 有蜘蛛,蜻蜓,禅三种动物共20只,共有腿124条,翅膀22对,问蜻蜓有多少只?
- 如图,在△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,△ABC是等腰三角形吗?为什么?
- 已知函数f(x)=x+1/x,(1)用定义证明:f(x)在(0,正无穷)上是单调递增函数 (2)
- The rain began to beat heavily ___ the windows
- 导数(很简单的一个)
- 属于集约型的和属于粗放型的有哪些?