椭圆x^2/25+y^2/9=1上不同三点A(x1,y1),B(4,9/4),C(x2,y2)到焦点F(4,0)的距离成等差数列,求x1+x2.
人气:249 ℃ 时间:2020-04-17 07:19:23
解答
由已知三距离成等差数列 |AF|-|BF|=|BF|-|CF| ,得:
2*|BF|=|AF|+|CF| → 2*9/5=[ (x1-4)^2 + y1^2 ]^(1/2) + [ (x2-4)^2 + y2^2 ]^(1/2)
因为(x1,y1),(x2,y2)在圆上,x1^2/25+y1^2/9=1,x2^2/25+y2^2/9=1,带入上面方程得:
2*9/5 = [ (25-4*x1)^2/25 ]^(1/2) + [ (25-4*x2)^2/25 ]^(1/2)
2*9/5 = [ 50 - 4(x1+x2) ]/5
∴ x1+x2=8 ;①
又∵ y1^2-y2^2=(-9/25)*(x1^2-x2^2)=(-72/25)*(x1-x2)
∴ -(x1-x2) / (y1-y2) = (25/72)*(y1+y2) ②
AC的垂直平分线过AC中点[ (x1+x2)/2,(y1+y2)/2 ],且与AC垂直,其方程可表示为:
y = [-(x1-x2) / (y1-y2) ] * [ x-(x1+x2)/2 ] + (y1+y2)/2 根据①、②式可得:
y = (25/72)*(y1+y2) * [ x-64/25 ]
所以,AC垂直平分线必过 ( 64/25,0 ) 点.
选为满意吧!
推荐
- 椭圆X225+Y29=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列.(1)求证x1+x2=8;(2)若线段AC的垂直平分线与x轴的交点为T,求直线的斜率.
- 椭圆X^2/25+Y^2/9=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4.0)的距离成等差数列,求证ac的垂直平分线过定点
- 椭圆x^2/25+y^2/9=1上不同三点A(x1,y1)B(4,y)C(x2,y2)与右焦点F的距离成等差数列求x1+x2
- 椭圆x²/25+y²/9=1上不同三点A(x1,x1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列,
- 椭圆X225+Y29=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列.(1)求证x1+x2=8;(2)若线段AC的垂直平分线与x轴的交点为T,求直线的斜率.
- “母亲啊!你是荷叶,我是红莲,心中的雨点来了,除了你,谁是我在无遮拦天空下的荫蔽?”“心中的雨点”指什么?
- 根据首字母填单词,Liu Qing is l_____ to music
- 鸢尾花的“鸢”字拼音怎么读?几声?有没有多音字?
猜你喜欢