设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x∈R),
(1)试证明,对于任意的实数a,函数f(x)在R上为增函数;
(2)试确定a的值,使函数f(x)为奇函数.
人气:416 ℃ 时间:2019-08-19 15:28:50
解答
(1)试证明,对于任意的实数a,函数f(x)在R上为增函数;
用定义证明:设x1<x2,作差f(x1)-f(x2),
化简、通分得2(2^x1-2^x2)/[(2^x1+1)(2^x2+1)]
因为y=2^x是增函数
所以2^x1<2^x2
∴f(x1)<f(x2)
∴对于任意的实数a,函数f(x)在R上为增函数
(2)试确定a的值,使函数f(x)为奇函数.
f(0)=f(﹣0)=﹣f(0)
∴2f(0)=0
∴f(0)=0
即a﹣2/(2^0+1)=0
∴a=1
推荐
- 设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x属于R)证明对于任意A,f(x)为增函数
- 设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x属于R)
- 设A是实数,函数f(x)=a-(2除以(2的x次方后再+1))(x属于R),试确定a的值,使f(x)为奇函数
- 若函数f(x)=1除以2的x次方-1然后+a是奇函数,则实数a=
- 设f(x)=e的x次方除以(1+ax),其中a为正实数(1)当a=3分之4时,求f(x)的极值点.(2)若f(x)为R上的单调函数求a取值范围.
- (51×十七分之二+1.3)÷3(得数保留两位小数)这个不用简便
- My sister is_______eight-year-old girl,She is very lovely的空里边填什么词是填an还是a还是the还是/
- 房屋面结构平面图中WKL1(1A)中的A是什么意思啊.
猜你喜欢