因为Sn=4an-3,则Sn-1=4an-1-3(n≥2),
所以当n≥2时,an=Sn-Sn-1=4an-4an-1,
整理得an=
| 4 |
| 3 |
所以{an}是首项为1,公比为
| 4 |
| 3 |
(Ⅱ)因为an=(
| 4 |
| 3 |
由bn+1=an+bn(n∈N*),得bn+1−bn=(
| 4 |
| 3 |
可得bn=b1+(b2-b′1)+(b3-b2)+…+(bn-bn-1)
=2+
1−(
| ||
1−
|
| 4 |
| 3 |
当n=1时上式也满足条件.
所以数列{bn}的通项公式为bn=3(
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
1−(
| ||
1−
|
| 4 |
| 3 |
| 4 |
| 3 |