> 数学 >
已知三阶矩阵的特征值为0,1,2,那么R(A+1)+R(A-1)等于多少
是R(A+E)+R(A-E),
人气:479 ℃ 时间:2020-04-30 23:18:49
解答
因为λE-A=0,所以λ'E-(A+E)=0,推出(λ'-1)E-A=0,故λ'-1=λ,即λ'=λ+1
所以 A+E 特征值为 A的特征值加 1,分别为1,2,3;
同理 A-E特征值为 A的特征值减1,分别为-1,0,1;
所以A+E和A-E秩分别为3和2,因此R(A+E)+R(A-E)=5.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版