数列{an}中,a1=8,a4=2且满足a(n+2)=2a(n+1)-an,n属于N*
数列{an}中,a1=8,a4=2且满足a(n+2)=2a(n+1)-an,n属于N*
1.求数列{an}的通项公式
2.设Sn=|a1|+|a2|+...+|an|,求Sn
3.设bn=1/n(12-an)[n属于N*]是否存在最大的整数m,使得对任意n属于N*均有Tn>m/32成立?若存在,求出m的值,若不存在,请说明理由.
人气:310 ℃ 时间:2020-05-31 10:16:41
解答
a(n+2)=2a(n+1)-ana(n+2)-a(n+1)=a(n+1)-an所以an为等差数列a4-a1=3dd=-2an=-2n+102.当n《5 ,|an|=-an当n>5 |an|=anSn=n(n+1)+(-1)^sing(n-5)*20或者sn= 当n《5sn=(n-5)(n-4)+20 当n>53.bn=2(1/N-1/(N+1)) ...
推荐
- 数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(n∈N+)
- )数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-.
- 数列 {an}中 a1=8 a4=2 且a(n+2)=2a(n+1) - an n属于N+
- 谢谢)数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-An,n属于N*
- 数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn
- 找课文,A man who never gave up .需要全文.
- obama received the Nobel Peace Prize ,how to criticize this thing
- 表示腿的动作的词(30个)
猜你喜欢