4 |
2x+1 |
则y=t+
4 |
t |
任取t1、t2∈[1,3],且t1<t2,f(t1)−f(t2)=
(t1−t2)(t1t2−4) |
t1t2 |
当1≤t≤2,即0≤x≤
1 |
2 |
当2<t≤3,即
1 |
2 |
由f(0)=−3,f(
1 |
2 |
11 |
3 |
(2)设x1、x2∈[0,1],且x1<x2,
则g(x1)-g(x2)=(x1-x2)(x12+x1x2+x22-3a2)>0,
所以g(x)单调递减.
(3)由g(x)的值域为:1-3a2-2a=g(1)≤g(x)≤g(0)=-2a,
所以满足题设仅需:1-3a2-2a≤-4≤-3≤-2a,
解得,1≤a≤
3 |
2 |