已知数列{an}中,a1=3/5,数列an=2-1/an-1(n≥2,n∈N*),数列{bn}满足bn=1/an-1
求证明数列{bn}是等差数列
人气:150 ℃ 时间:2019-08-21 07:29:40
解答
an=2-1/a(n-1)
an -1 = [a(n-1) - 1]/a(n-1)
1/(an -1) = a(n-1)/[a(n-1) - 1]
= 1+ 1/[a(n-1) - 1]
1/(an-1) - 1/[a(n-1) - 1] = 1
=> bn = 1/(an -1 ) 是等差数列
推荐
- 已知数列{an}中,a1=3/5,an=2-1/an-1(n》2),数列{bn)满足bn=1/an-1.求证数列{bn}是等差数列.
- 已知数列{an}满足a1=3,an+1−3an=3n(n∈N*),数列{bn}满足bn=an3n. (1)证明数列{bn}是等差数列并求数列{bn}的通项公式; (2)求数列{an}的前n项和Sn.
- 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项
- 已知数列{an}中,a1=2,a↓n+1=2an+3 1)求an .2)令bn=n an,求数列{bn}的前n项和sn
- 已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求数列{an}的通项公式.(2)令bn=an*3^n,求{bn}的前n项和
- 缴 zhuo 组词
- 三角函数题目,F(X)=的形式
- 地球表面除南北二极点外,任何地点的自转角速度都相等.但是为什么近日点和远日点 为什么?
猜你喜欢