∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=
1 |
2 |
(2)由已知Sn=
1 |
2 |
n≥2时,an=Sn-Sn-1=
1 |
2 |
1 |
2 |
∴
an |
an−1 |
n−1 |
n−2 |
an−1 |
an−2 |
n−2 |
n−3 |
a3 |
a2 |
2 |
1 |
∴
an |
a2 |
故{an}是以a2为公差,以a1为首项的等差数列.
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
an |
an−1 |
n−1 |
n−2 |
an−1 |
an−2 |
n−2 |
n−3 |
a3 |
a2 |
2 |
1 |
an |
a2 |