已知等差数列{an}的首项a1=1,公差d>0,{bn}为等比数列,且a2=b2,a5=b3,a14=b4,求{an},{bn}的通项公式
人气:231 ℃ 时间:2020-02-03 10:45:42
解答
因为等差数列{an}的首项a1=1
所以a2=a1+d=1+d,a5=a1+4d=1+4d,a14=a1+13d=1+13d
因为{bn}为等比数列
所以(b3)^2=b2*b4
又a2=b2,a5=b3,a14=b4
所以(a5)^2=a2*a14
即(1+4d)^2=(1+d)*(1+13d)
所以1+8d+16d^2=1+14d+13d^2
即d^2-2d=0
所以d=2或d=0
又因为d>0
所以d=2
所以an=a1+(n-1)d=1+2(n-1)=2n-1
所以b2=a2=3,b3=a5=9
故q=b3/b2=9/3=3
所以b1=b2/q=3/3=1
所以bn=b1*q^(n-1)=1*3^(n-1)=3^(n-1)
推荐
- 已知等差数列的首项A1=1,公差d>0,A2,A5,A14分别是等比数列的B2,B3,B4
- 已知等差数列An中A1=1,公差D>0,且A2,A5,A14分别是等比数列Bn的第二项,三,四项
- 已知等差数列{an}的首项a1=1,公差d>0,数列{bn}是等比数列,且a2=b2,a5=b3,a14=b4
- 已知等差数列{an}中,a1=1,公差d>0.且a2,a5,a14分别是等比数列{bn}的第二项,第三项,第四项;
- 已知等差数列﹛an﹜的首项a1=1,公差d>0,且a2,a5,a14恰好是等比数列{bn}的第2项,第3项,第4项
- 试证明关于x的方程(a2-8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.
- 小学语文课本五年级上册15课小练笔
- 《白雪歌送武判官归京》中描写雪景现已成为千古绝句的比喻句
猜你喜欢
- 二氧化碳和氧气分别有什么其它用途?
- 线性代数::一矩阵与其转置矩阵的特征值是否相同?急.为什么?、
- Jalan Law Yew Swee是马来西亚,吉隆坡的什么地方?
- 古诗词中含有 芷欣 二字的,古文章或者诗词都可以..
- f(x)为偶函数,g(x)为奇函数,且f(x)+g(x)=(x-1)分之1,求f(x),g(x)的表达式
- 用“有志者立长志,无志者常立志”造一句话
- 用There be.造5个句子
- 一弹簧受到100N拉力时,长11厘米,受力为150N时,长13 厘米,求劲度系数,求弹簧原长