n阶实反对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间,其维数等于____,其一组基为______?
如题
人气:479 ℃ 时间:2020-05-20 06:09:41
解答
反对称矩阵主对角线上元全是0,aji = -aij
所以反对称矩阵由其上三角部分唯一确定,
故其维数为:(n-1)+(n-2)+...+1 = n(n-1)/2
令Eij 为aij=1,aji=-1,其余元素为0的矩阵,1
推荐
猜你喜欢
- a sin for him,desire within,fall in love with your deep dark sin帮翻译一下,
- 因为它可以把美丽与健康传授给每一个热爱生活的人 用英语怎么说
- 很简单的1句话,可是不明白,请英文高手翻译下
- 一个长方体水槽,水深10CM,把一个体积为1200立方厘米胡铁块浸入在水槽中,这时水深12CM,水槽中水的体积是多
- 月亮上有大大的圆黑斑(在晚上)什么原因
- 3公顷500平方米=多少公顷
- 如果对于任意x>2 不等式|2x+m+ln(x-2)|=|2x+m|+|ln(x-2)|恒成立,m=?
- 甲乙两种商品成本共2200元.甲商品按20%的利润定价,乙商品按15%的利润定价...