过抛物线y =ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长
分别是p、q,则 1/p+1/q等于()
A.2a B.1/(2a) C.4a D. 4/a
答案是C,求过程,写的越详细越好.基础分20,请详解.
注:过抛物线y =ax^2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长 分别是p、q,则 1/p+1/q等于()
A.2a B.1/(2a) C.4a D. 4/a
谢谢一楼!有没有简便的做法?
人气:166 ℃ 时间:2019-12-20 22:41:31
解答
抛物线标准方程:x^2=y/aF(0,1/(4a)),设P(x1,y1) Q(x2,y2),PQ平行于X轴时,方程为:y=1/(4a),p=q=1/(2a),1/p+1/q=4aPQ不平行于X轴时,设其方程为x=k(y-1/(4a))代入抛物线方程得:y=ak^2*(y-1/(4a))^216ay=k^2(4ay-1)^2...
推荐
- 过抛物线y=ax^2(a>0)的焦点F用以直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p、q,则1/p+1/q等于?
- 过抛物线y=ax^2(a>0)的焦点F作直线交抛物线与P、Q两点,若PF与FQ的长分别为p、q,则1/p+1/q为多少
- 过抛物线y^2=4x的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p、q,则1/p+1/q等于?
- 过抛物线y=ax^2(a>0)的焦点F作一直线抛物线于P.Q两点,若线段PF与FQ的长分别为p,q,则(1/p)+(1/q)= 4a
- 过抛物线y=ax^2(a>0)的焦点作一条直线交抛物线于P,Q两点,若线段PF与FQ的长分别是P,q,则1/P+1/q=
- 一个50千克的物体自由下落时,重量是多少
- 用一个平面截一个棱柱无论以何种方式切割得到的截面一定是什么图形?
- 再塑生命 课后字词造句
猜你喜欢