已知a,b,c为三个正整数,且a+b+c=12,那么以a,b,c为边组成的三角形可以是钝角三角形吗?为什么?
人气:107 ℃ 时间:2020-06-12 08:46:09
解答
不可以.
不妨设a≤b≤c,则要是钝角三角形必须有
a+b>c …… ①
a²+b²<c² ……②
由于 a+b+c=12 ,代入①式得
a+b > 12-a-b ,推出 a+b>6,即 a+b≥7
∴ a²+b²<c²=(12-a-b)²≤5²=25
而 a²+b²≥(a+b)²/2≥7²/2=49/2
∴ 49/2≤ a²+b² <25
无整数解,所以不会构成钝角三角形.
推荐
猜你喜欢
- ph缓冲剂的配制中,有的人说是要煮沸的蒸馏水冷却后配制,请问有这个必要么?
- 利用动力臂是阻力臂的3倍的杠杆将重600牛的物体抬高,若手向下的压力是250牛,手下降的高度是30厘米,则物
- 高中物理运动学与力学相结合的一道计算题
- 眼镜的复数 土豆的复数
- f(x)在R上有意义,f(x)≠0,f(xy)=f(x)f(y),求f(2007)=?
- A.How many B,How far C,Howlong D,How often
- 《夜莺的歌声》这篇课文主要讲一个什么故事?
- 等压线愈稀疏,表示气压梯度愈小