> 数学 >
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+4.+2000)
人气:276 ℃ 时间:2020-05-11 19:56:10
解答
1+2+...+n=n*(n+1)/2
1/(1+2+..+n)=2/[n*(n+1)]=2*[1/n-1/(n+1)]
原式
=2*(1/2-1/3)+2*(1/3-1/4)+...+2*(1/2000-1/2001)
=2*(1/2-1/3+1/3-1/4+...+1/2000-1/2001)
=2*(1/2-1/2001)
=1-2/2001
=1999/2001
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版